Low-level laser therapy (LLLT), also known as photobiomodulation, is the use of low-power lasers or light-emitting diodes (LEDs) for treatment purposes. When LLLT is used on the brain, it is known as transcranial LLLT or transcranial photobiomodulation. Many research studies have shown that LLLT can help treat a variety of brain health issues.
Different from high-intensity surgical lasers, low-powered lasers do not cut or burn tissue. Instead, these lasers stimulate a biological reaction and promote cells to function properly. Moreover, it’s also easy to use LLLT utilizing red and near-infrared light on your own home. In the article below, we will discuss the brain health benefits of low-level laser therapy (LLLT).
How Low-Level Laser Therapy Works
Research studies show that red and near-infrared light between the wavelengths of 632 nanometers (nm) and 1064 nm can have brain health benefits. For brain cells or neurons, the optimal range for the wavelengths seems to be between 800 nm and 1000 nm as these can penetrate the scalp and skull to reach the brain. Most devices ultimately fall within this range.
The light given off from these devices stimulate a photochemical response within neurons or brain cells, which can increase the natural healing process and can also cause beneficial changes in their behavior by supporting the mitochondria. The mitochondria are the “powerhouses of the cell,” producing most of the energy in the human body in the form of adenosine-5- triphosphate (ATP). ATP is the cell's main source of energy. The brain constantly needs to use it to function properly.
Proper mitochondrial function and ATP production are fundamental for neuroprotection and cognitive enhancement as well as for the prevention and treatment of a variety of neurological diseases. Research studies have shown that transcranial LLLT promotes proper mitochondrial function and considerably improves the production of ATP in the human brain.
The mitochondria have photoreceptors which absorb the photons from light and turn them into ATP or energy which can be utilized to perform cellular tasks and biological processes. This system is similar to that of plant photosynthesis where sunlight is absorbed by plants and turned into energy for the plants to grow. Furthermore, by stimulating the mitochondria and producing more ATP, LLLT gives brain cells or neurons even more ATP energy to better heal and repair themselves.
On top of this, low-level laser therapy has also been shown to:
- Increase neurogenesis, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)
- Reduce inflammation
- Decrease free radicals and oxidative stress in the brain
- Increase blood flow and circulation, including within the frontal cortex
- Reduce pain by supporting the human body’s opioids or natural pain relievers
- Increase rate of oxygen consumption in the frontal cortex
- Increase serotonin
Many traumatic brain injuries and neurological diseases can be treated with LLLT, including anxiety, depression, post-traumatic stress disorder (PTSD), post-concussion syndrome, stroke, Alzheimer's disease, and dementia. We will discuss how low-level laser therapy (LLLT) has been shown to help each of the brain health issues, among others, demonstrated below.
LLLT for Traumatic Brain Injury
Traumatic brain injury (TBI) is a growing brain health issue where approximately 1.7 million people experience some type of TBI in the U.S. every year. Mild TBIs or concussions make up about 75 percent of all traumatic brain injuries. Military personnel frequently experience TBI and many of them often struggle with PTSD, anxiety, and depression.
Several research studies have shown that patients with chronic mild TBI have experienced improved cognition, memory and sleep with LLLT. One research study also evaluated whether LLLT could help treat 11 patients with chronic mild TBI symptoms. Two patients had cognitive dysfunction and four patients had multiple concussions.
After 18 LLLT sessions, the patient's cognition, memory and verbal learning improved. Participants also said that they slept better and had fewer PTSD symptoms. Coworkers, friends, and family also reported improved social, interpersonal, and occupational functioning. In another research study, 10 people with chronic TBI were given 10 LLLT sessions and experienced reduced headaches, cognitive dysfunction, sleep problems, anxiety, depression and irritability.
Several mice research studies also show that LLLT can prevent cell death and increase neurological performance after TBI. Researchers believe that LLLT improves TBI symptoms because the mitochondria in the brain can become dysfunctional after TBI, resulting in an inadequate supply of ATP. LLLT can support the mitochondria and increase ATP production.
After traumatic brain injury (TBI) there is also poor blood flow and oxygenation, and increased inflammation and oxidative stress in the brain. This can ultimately cause brain damage, however, LLLT can help treat these brain health issues as well as help increase antioxidants, promote neurogenesis, and relieve chronic symptoms, among other brain health benefits.
LLLT for Depression and Anxiety
Research studies in both rats and humans have shown that LLLT can improve mood and reduce symptoms of depression. In 2009, researchers took 10 patients with a history of major anxiety and depression, including PTSD and substance abuse, and utilized LLLT for four weeks. At the end of the research study, six of the 10 patients experienced remission of their depression and seven of the 10 patients experienced remission of their anxiety. There were no observable side-effects.
Several research studies have shown that depression is associated with abnormal blood flow in the frontal cortex of the brain. LLLT increases blood flow and circulation. Other research studies have shown that participants report improved positive emotions and reduced depressive symptoms after LLLT treatment. Participants with TBI also experienced a decrease in anxiety, depression, irritability, and insomnia as well as an overall improvement in quality of life after LLLT.
LLLT for Alzheimer's Disease and Dementia
Research studies show that LLLT can boost performance and improve cognitive function, including attention and memory, in animals, young healthy people and elderly people. Preliminary research studies also show that LLLT may ultimately help slow down the progression of Alzheimer’s disease by decreasing a protein in the brain which is associated with dementia.
The downregulation of brain-derived neurotrophic factor (BDNF) occurs early in the progression of Alzheimer's disease and dementia. Research studies have shown that LLLT can also help prevent brain cell or neuron loss by upregulating BDNF.
Researchers have also utilized LLLT in middle-aged mice and discovered that the memory and cognitive performance of the middle-aged mice improved so much that it became similar to that of young mice. The researchers concluded that LLLT should be utilized in cases of general cognitive impairment in elderly people or even for Alzheimer's disease and dementia.
Several other research studies have shown that LLLT increases alertness, awareness and sustained attention as well as improves short-term memory and reaction time. Research study participants also made fewer errors during tests. Another research study found that LLLT enhanced cognition by promoting neuroprotection and supporting the mitochondria.
LLLT for Stroke
Numerous studies also show that LLLT reduces neurological problems and improves behavior in rats and rabbits after stroke. It also increases the growth of new brain cells or neurons, improving their overall recovery. Multiple other research studies also show that LLLT can considerably reduce brain damage and improve recovery outcome measures after a stroke.
In one research study, researchers utilized LLLT on patients approximately 18 hours after they experienced a stroke. Five days after the stroke, they found considerably greater improvements in the LLLT-treated group. The improvements continued 90 days after the stroke. At the end of the research study, 70 percent of the patients treated with LLLT had successful outcome measures in comparison with only 51 percent of the control subjects in the research study.
Follow up research studies with over 600 stroke patients found similar brain health benefits associated with low-level laser therapy (LLLT). Researchers believe that the increase in the production of ATP is responsible for the improvements.
Low-level laser therapy, or LLLT, is a non-invasive treatment approach which utilizes low-power lasers or light-emitting diodes for the treatment of brain health issues and neurological diseases. Many research studies with both animal and human trial have demonstrated that LLLT provides many brain health benefits without harmful side-effects. Healthcare professionals can help improve the symptoms of brain health issues and neurological diseases with a variety of treatment methods and techniques. Proper diagnosis is fundamental for proper treatment. - Dr. Alex Jimenez D.C., C.C.S.T. Insight
Low-level laser therapy (LLLT), also known as photobiomodulation, is the use of low-power lasers or light-emitting diodes (LEDs) for treatment purposes. In the article above, we discussed the brain health benefits of low-level laser therapy (LLLT) on a variety of brain health issues and neurological diseases. The scope of our information is limited to chiropractic, musculoskeletal and nervous health issues as well as functional medicine articles, topics, and discussions. To further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900 .
Curated by Dr. Alex Jimenez
Additional Topic Discussion: Chronic Pain
Sudden pain is a natural response of the nervous system which helps to demonstrate possible injury. By way of instance, pain signals travel from an injured region through the nerves and spinal cord to the brain. Pain is generally less severe as the injury heals, however, chronic pain is different than the average type of pain. With chronic pain, the human body will continue sending pain signals to the brain, regardless if the injury has healed. Chronic pain can last for several weeks to even several years. Chronic pain can tremendously affect a patient's mobility and it can reduce flexibility, strength, and endurance.
Neural Zoomer Plus for Neurological Disease
Dr. Alex Jimenez utilizes a series of tests to help evaluate neurological diseases. The Neural ZoomerTM Plus is an array of neurological autoantibodies which offers specific antibody-to-antigen recognition. The Vibrant Neural ZoomerTM Plus is designed to assess an individual’s reactivity to 48 neurological antigens with connections to a variety of neurologically related diseases. The Vibrant Neural ZoomerTM Plus aims to reduce neurological conditions by empowering patients and physicians with a vital resource for early risk detection and an enhanced focus on personalized primary prevention.
Formulas for Methylation Support
XYMOGEN’s Exclusive Professional Formulas are available through select licensed health care professionals. The internet sale and discounting of XYMOGEN formulas are strictly prohibited.
Proudly, Dr. Alexander Jimenez makes XYMOGEN formulas available only to patients under our care.
Please call our office in order for us to assign a doctor consultation for immediate access.
If you are a patient of Injury Medical & Chiropractic Clinic, you may inquire about XYMOGEN by calling 915-850-0900.
For your convenience and review of the XYMOGEN products please review the following link.*XYMOGEN-Catalog-Download
* All of the above XYMOGEN policies remain strictly in force.