Skip to main content

Todays Trending Topic ♛

Exercise Reduces Symptoms from Fibromyalgia | Central Chiropractor

Fibromyalgia is a mysterious disorder that has been misunderstood for many years, however, there are lots of treatment options available to relieve its symptoms. When it comes to fibromyalgia, exercise can be beneficial to relieve it.

How does exercise help fibromyalgia?
Exercise will be an essential part of fibromyalgia therapy, although your chronic pain and fatigue may make exercising seem excruciating. Physical activity reduces symptoms such as fatigue, depression, and can even help you sleep better. Exercise can be a fundamental part of managing your symptoms.

Exercise for Fibromyalgia
Getting regular physical activity 30 minutes per day, helps reduce perceptions of pain in people with fibromyalgia, according to a 2010 study published in Arthritis Research & Therapy. The signs of fibromyalgia may make exercising a challenge, although exercise is a commonly prescribed treatment for chronic pain.

During a research study, the research team separated 84 minimally active patients…

Popliteal Artery Entrapment: A Mysterious Syndrome



Chiropractor, Dr. Alexander Jimenez looks at the diagnosis of and treatment options for popliteal artery entrapment, a poorly understood condition that can affect otherwise healthy athletes…

Popliteal artery entrapment syndrome (PAES) occurs when muscles that surround the popliteal artery in the area of the popliteal fossa, occlude the artery (and sometimes the vein as well), and decrease blood flow to the lower leg. Two forms of PAES exist: anatomical and functional.

The symptoms remain the same, no matter which type is the cause.

Typically, the popliteal artery tucks neatly between the heads of the gastrocnemius; alongside the plantaris; over the popliteus; and under the soleus muscles (see Figure 1). In anatomical PAES, the abnormal positions of the artery, or the muscles that surround the artery, cause compression against the bone or another muscle.


Despite the fact that it was first described in the literature in 1958, the formation of the popliteal vascular entrapment forum in 1998 marked the first consensus on the different anatomical types (see Figure 2 and Table 1)(1). Functional PAES occurs despite normal anatomy, and possibly due to compartment pressure or hypertrophy of the neighboring muscles.





Difficult Diagnosis

Considered rare, no one knows the actual incidence of PAES(2). Since the syndrome can occur alongside other pathologies in the leg, it is possibly underreported. Young athletes who present with symptoms of intermittent claudication most likely suffer from functional PAES. Anatomical PAES supposedly occurs in older, more sedentary persons.

Athletes complain of a vague and generalised pain in the posterior calf, which can radiate anteriorly, depending on the involved anatomy. Sportsmen also report leg swelling, numbness, feelings of coldness in the leg or foot, and tingling. Pain begins after initiating activity, or with certain provocative manoeuvres. The pain usually resolves with rest, although an ache can persist.

The difficulty in diagnosing PAES stems from the lack of consensus about diagnostic exams, symptoms that mimic or occur with other syndromes, and frequent findings of asymptomatic vascular occlusion (see Table 2).



Doppler ultrasound studies show that in subjects with popliteal artery compression, anywhere from 7% to 80% of this group are asymptomatic(2). Additionally, Doppler evaluations with provocation detect popliteal vein compression in up to 100% of this group(1)! Other causes of exertional leg pain include stress fracture, medial tibial stress syndrome (MTSS), and chronic exertional compartment syndrome CECS.

Clinicians must first rule out bone stress or fracture when evaluating exertional leg pain. Many also perform clinical vascular provocation tests where they attempt to reproduce the pain in the clinic through exertion manoeuvres. They assess peripheral pulses, arterial bruits, or ankle brachial indices (comparing the difference in the blood pressure at the ankle versus the arm) before and after the provocation of symptoms.

At the Brisbane Sports and Exercise Medicine Specialists Clinic, doctors have developed a specific clinical exam for PAES(2). First, with the athlete at rest, they listen for a bruit or vascular murmur at the popliteal fossa (indicating a blockage of the artery) and examine the pulses in the lower leg. Then they ask the athlete to perform 15–20 heel drops off the edge of a step to try and reproduce the pain. Right after that test, they again listen to the artery at the popliteal fossa and evaluate peripheral pulses. They recommend listening for several minutes since complete occlusion will not make any sound until blood flow begins again.

These clinicians believe that a lack of pain on activity, an absence of bruits, or no change in pulses means the chance of the athlete suffering from PAES is small. However, if the test is positive for the above features, it does not necessarily mean that PAES causes the pain. There is the possibility that the athlete is an asymptomatic occluder, and a different pathology triggers the pain. Therefore, a clinical exam and leg pain are not sufficient to diagnose PAES; there must be evidence of actual vascular occlusion in conjunction with the pain.

To document arterial occlusion, athletes undergo a Doppler ultrasound exam of the popliteal fossa. Examination of the artery takes place with the athlete lying in prone with the leg in the neutral position; while moving the ankle into plantar flexion against partial resistance, and with plantar flexion against full resistance while standing on toes or performing heel drops (see Figure 3). Occlusion found on ultrasound, combined with characteristic pain symptoms, is significant for both anatomical and functional PAES.


Even with a positive Doppler, many clinicians perform magnetic resonance imaging (MRI) to fully visualize the anatomy, thereby recognizing any deviations that might result in anatomical PAES. MRI angiography (MRA) allows examiners to visualize the vasculature during movement, essential in functional PAES. Keep in mind that the results of the test can be skewed due to motion artifact on the images. Some clinicians conduct compartment pressure testing, primarily to rule out chronic compartment syndrome, as it doesn’t measure arterial occlusion. This can be a deception however because PAES can exist alongside compartment syndrome and be the primary cause of the pain.

A Red Herring?

Doctors in Barcelona have reported the case of a 16-year-old female Olympic tae-kwon-do fighter who developed persistent and progressive pain in her calf(3). Pulses remained normal after clinical provocation of symptoms. Musculature anatomy was normal on ultrasound. Because the pain improved with rest, doctors suspected chronic compartment syndrome. Testing measured abnormal compartment pressure at rest, which remained unchanged with exercise.

Surgeons performed fasciectomy of the anterolateral and posterior compartments of both legs and the athlete experienced a typical recovery. However, the symptoms remained, especially with prolonged exertion. MRI evaluation appeared normal, but pressures measured in the deep posterior compartments of both legs proved abnormal at rest and after exercise. Therefore, the athlete again underwent fasciectomy of the deep posterior compartments.

The patient resumed full activity and progressed to win a national competition, however, after four months, the pain returned. All compartment pressures appeared normal. Evaluated now with a Doppler ultrasound, the athlete showed a decrease in arterial flow with resisted plantar flexion. Functional MRA revealed collapse of both arteries and veins bilaterally. Since the MRI showed normal anatomy the athlete was diagnosed with functional PAES.

Surgical exploration revealed a hypertrophied plantaris muscle tendon compressing the popliteal vascular bundle. Surgeons removed a portion of the offending tendon, leaving the muscle belly intact. The athlete experienced a full recovery and a complete return to competition, without further incident of calf pain. This case demonstrates that symptoms of intermittent claudication, even in a young athlete, should always warrant a full exploration of vascular integrity, regardless of compartment pressures.

Treatment

In cases of anatomical PAES, surgery is almost always the most effective treatment. Because the types of entrapment vary, surgery can include fasciotomy, removal of the offending bands of muscle, muscle transfer, fossa decompression, or any combination of the above. Results are nearly always positive, with more than 90% of athletes who undergo this type of surgery fully returning to sport within three months(2).

Functional PAES may be more difficult to treat effectively. Surgery in these situation appears somewhat less effective, with an average success rate around 80%(2). With the presence of normal anatomy, surgeons can only guess where the occlusion takes place and where to target intervention.

Doctors at the Brisbane Sports and Exercise Medicine Specialists Clinic are pioneering a new treatment for functional PAES. They have obtained promising results by treating athletes with guided botulinum injections(2). They hypothesise that by paralysing the offending muscle surrounding the vessel, they remove the constriction on the artery. They further surmise that the localised muscle atrophy caused by the botulinum accounts for the prolonged effect of the medication beyond its expected therapeutic life. Further, they propose that the botulinum causes smooth muscle relaxation and therefore popliteal artery vasodilation. This new treatment gives athletes another option for treatment with fewer risks (see Figure 4).


Conclusion & Summary

Exertional leg pain is a clinical enigma. When pain only occurs during exercise and without palpable or visible evidence, a trainer often takes a ‘wait and see’ attitude. However, intermittent claudication from PAES, can cause arterial and tissue damage if left untreated.

Being aware of the different causes of exertional leg pain allows the clinician to explore all possibilities and make a sound diagnosis. Doppler ultrasound, MRI and MRA, as well as a thorough clinical exam help guide decision-making. Characteristic pain on exertion or provocation, and evidence of vascular occlusion are indicators of PAES. Surgery is the most likely treatment for PAES and return to sport statistics are high. Promising new treatments like guided botulinum injections give hope for both a low risk treatment and also a more accurate diagnostic tool.

References

1. J Vasc Surg. 2012;55:252-62

2. J Sports Med. 2014; 2014: 105953

3. J Sports Sci Med. 2011 Dec; 10(4): 768–770


Popular posts from this blog

Pain in the Quadratus Lumborum Muscle

A majority of the population have at some point experienced low back pain in their lifetimes. Although low back pain is recognized to result from numerous conditions or injuries on the lumbar spine, muscle strains such as a quadratus lumborum muscle strain, are believed to be a leading cause for the recognizable symptoms of pain and discomfort.
The quadratus lumborum muscle is a sizable muscle in the shape of a triangle, located deep on each respective side of the lower back. The role of the wide muscular tissue is to grant mobility to the lumbar spine in sequence for the torso to move laterally from side to side as well as extend and stabilize the lower spine to improve posture. When this muscle is strained or pulled, the symptoms can restrict movement on the lower back and since the muscular tissue is so extensive, recovery from this type of injury usually requires more time and patience to fully heal.


Quadratus Lumborum Syndrome V.S. Facet Joint Syndrome
When symptoms of back pa…

Achilles Tendon Injury

Achilles tendonitis is a medical term used to describe a condition resulting in irritation of the large tendon, the Achilles tendon. Found in the back of the ankle, this condition is recognized as a common cause for injury among athletes. Excessive use of the Achilles tendon results in inflammation together with swelling and pain.
The development of Achilles tendonitis can be associated with two important factors, most frequently among athletes, which are, lack of flexibility and over-pronation. With age, the tendons will begin to lose flexibility, just the same as other tissues in the body. This change causes the tendons to become more rigid and more vulnerable to injury. For some people, the ankle may roll too far downward and inward with each step they take. This is called over-pronation, which places more stress on the tendons and ligaments of the foot, contributing to injury if not corrected.
Achilles tendonitis may also develop from other factors. An increase in an athlete’s …

5 Common Causes for Shoulder Pain

The shoulders are the most mobile joints in the human body. Because the ball of the humerus is designed to be larger than the shoulder socket that holds it, the shoulders need to be supported by muscles, tendons, and ligaments to secure them in a stable or natural position. Since the shoulder can be unstable, it is often a site for many common complications. Below are 5 common causes of shoulder pain and their associated symptoms.
Rotator Cuff Tear
Rotator cuff tears within the shoulder are a very common type of shoulder injury. The rotator cuff consists of a set of four muscles: the supraspinatus, the infraspinatus, the subscapularis, and the teres minor. All of these muscles are attached to the bones of the shoulders by tendons, which purspose is to support, stabilize, and grant the arm movement to move up, down and rotate. The rotator cuff ensures that the arm remains in the shoulder socket. Damage or injury from an accident or gradual wear and tear can result in inflammation to t…

Today's Chiropractic

Location Near You

Community: Google+ Followers 10K+