Skip to main content

Todays Trending Topic ♛

Exercise Reduces Symptoms from Fibromyalgia | Central Chiropractor

Fibromyalgia is a mysterious disorder that has been misunderstood for many years, however, there are lots of treatment options available to relieve its symptoms. When it comes to fibromyalgia, exercise can be beneficial to relieve it.

How does exercise help fibromyalgia?
Exercise will be an essential part of fibromyalgia therapy, although your chronic pain and fatigue may make exercising seem excruciating. Physical activity reduces symptoms such as fatigue, depression, and can even help you sleep better. Exercise can be a fundamental part of managing your symptoms.

Exercise for Fibromyalgia
Getting regular physical activity 30 minutes per day, helps reduce perceptions of pain in people with fibromyalgia, according to a 2010 study published in Arthritis Research & Therapy. The signs of fibromyalgia may make exercising a challenge, although exercise is a commonly prescribed treatment for chronic pain.

During a research study, the research team separated 84 minimally active patients…

Ligament Pathology with Alteration of Motion Segment Integrity


A good read to understanding alteration of motion segment integrity (AOMSI) is the article “Biomechanical Analysis of clinical instability in the cervical spine” White, et al., Clin Ortho Relat Res, 1975;(109):85-96.

AOMSI is a biomechanical analysis. It’s all about numbers that have clinical meaning and significance. Threshold values have been determined that quantify without a doubt the patient has serious injury. It is a test of structural integrity of the ligaments interconnecting the motion segments. In this case, structural integrity has to do with the material properties of ligament tissue. Those properties include strength and flexibility. When a material is both strong and flexible, it’s called a semi-rigid material. Strength is related to the composition of the material. Strength might be thought of as load carrying capacity before failure.

Mechanism of Injury: Ligaments 


Ligament tissue has previously been bench tested to describe its physical characteristics of stress/strain. That is, given so much load (stress) how much elongation will occur (strain). During normal physiologic loads the ligament remains intact and recoils to its original length when the load is removed. If the load becomes too large the materials (ligaments) begin to yield. They go past their elastic limit. When this happens the (strained) ligament fibers will not return to their original shape. The ligament loses its restraining capacity to hold the joint in normal stabilization and hypermobility occurs.

The ligaments, if sufficiently strained or avulsed results in AOMSI. The following paragraphs illustrates that if AOMSI is found there must be gross destruction or yielding of multiple ligaments. We need to build a BIG motion segment with Velcro ligaments. When you tear them off, they make a really nice ripping noise. That drives home the point.

In the White et al work, they found that the motion segment stayed intact i.e., less than 11 degrees’ rotation (angualr mtion) and less than 3.5 mm translation, until they transected over 50% of the ligaments from an anterior or posterior approach. And when they transected from either approach the loss of stability was not linear but suddenly catastrophic. And they meant that suddenly the two vertebra totally separated in rotation or translation.


Suddenly Separated: pulled apart, head off of body, all neural components compromised, paralysis. Keeping that in mind, what are the injuries of someone just under the threshold? Severe to very severe. They stand the possibility of a serious event with much less force.

Prevalence of Ligament Injury: AOMSI


If AOMSI is detected, think about more than 50% of ligaments transected. That will start to explain the seriousness of the finding. In a patient/child that demonstrates hypermobility everywhere, then you take a statistical average of all segments, and look at the aberrant statistical finding if it exists. There are clues to injury everywhere when you understand what the numbers mean in reference to stability and function.



To diagnose ligament laxity, it is imperative that imaging be performed and a basic flexion-extension x-ray is all that is required. In today’s medical economy, advanced imaging of MRI or CT Scan, although accurate becomes an unnecessary expenditure and an x-ray renders very accurate demonstrative images to conclude a definitive diagnosis. In determining if there is an impairment, it is necessary to follow the AMA Guides to the Evaluation of Permanent Impairment as the 4th, 5th and 6th editions all render an impairment for AOMSI as sequella to ligament laxity, which is damage to the ligament from trauma.



This document is intended to serve as a simple explanation as to the severity of ligament damage and how to demonstrably diagnose the injury. It is also critical to remember that ligament do “wound repair.” In normal physiology, ligaments grow during puberty from cells within the ligaments called fibroblasts. They produce both collagen (white) and elastin (yellow) tissue, which gives the ligaments both tensile and elastic strength. Upon puberty the cells stop producing tissue and remains dormant. Upon injury, the fibroblast reactivates, but can only produce collage leaving the joint wound repaired in an aberrant juxtaposition (place) with poor movement abilities due to the lack of the requisite elastin. In turn, according to Hauser et. Al (2013) this leads to permanent loss of function of the ligament and arthritis of the joint. This is not a speculative statement; it is based upon Wolff’s that dates back to the late 1800’s and has been a guiding principle in healthcare for more than a century.



The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .



References:

White, et al., Clin Ortho Relat Res, 1975;(109):85-96

Hauser, Dolan,Phillips, Newlin, Moore Woldin, B.A.(2013) Ligament injury and healing: A review of current clinical diagnostics and therapeutics.The Open Rehabilitation Journal, 6,1-20.

 Additional Topics: Weakened Ligaments After Whiplash


Whiplash is a commonly reported injury after an individual has been involved in an automobile accident. During an auto accident, the sheer force of the impact often causes the head and neck of the victim to jerk abruptly, back-and-forth, causing damage to the complex structures surrounding the cervical spine. Chiropractic care is a safe and effective, alternative treatment option utilized to help decrease the symptoms of whiplash.




blog picture of cartoon paperboy big news



TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7®️ Fitness Center






Popular posts from this blog

Pain in the Quadratus Lumborum Muscle

A majority of the population have at some point experienced low back pain in their lifetimes. Although low back pain is recognized to result from numerous conditions or injuries on the lumbar spine, muscle strains such as a quadratus lumborum muscle strain, are believed to be a leading cause for the recognizable symptoms of pain and discomfort.
The quadratus lumborum muscle is a sizable muscle in the shape of a triangle, located deep on each respective side of the lower back. The role of the wide muscular tissue is to grant mobility to the lumbar spine in sequence for the torso to move laterally from side to side as well as extend and stabilize the lower spine to improve posture. When this muscle is strained or pulled, the symptoms can restrict movement on the lower back and since the muscular tissue is so extensive, recovery from this type of injury usually requires more time and patience to fully heal.


Quadratus Lumborum Syndrome V.S. Facet Joint Syndrome
When symptoms of back pa…

Achilles Tendon Injury

Achilles tendonitis is a medical term used to describe a condition resulting in irritation of the large tendon, the Achilles tendon. Found in the back of the ankle, this condition is recognized as a common cause for injury among athletes. Excessive use of the Achilles tendon results in inflammation together with swelling and pain.
The development of Achilles tendonitis can be associated with two important factors, most frequently among athletes, which are, lack of flexibility and over-pronation. With age, the tendons will begin to lose flexibility, just the same as other tissues in the body. This change causes the tendons to become more rigid and more vulnerable to injury. For some people, the ankle may roll too far downward and inward with each step they take. This is called over-pronation, which places more stress on the tendons and ligaments of the foot, contributing to injury if not corrected.
Achilles tendonitis may also develop from other factors. An increase in an athlete’s …

5 Common Causes for Shoulder Pain

The shoulders are the most mobile joints in the human body. Because the ball of the humerus is designed to be larger than the shoulder socket that holds it, the shoulders need to be supported by muscles, tendons, and ligaments to secure them in a stable or natural position. Since the shoulder can be unstable, it is often a site for many common complications. Below are 5 common causes of shoulder pain and their associated symptoms.
Rotator Cuff Tear
Rotator cuff tears within the shoulder are a very common type of shoulder injury. The rotator cuff consists of a set of four muscles: the supraspinatus, the infraspinatus, the subscapularis, and the teres minor. All of these muscles are attached to the bones of the shoulders by tendons, which purspose is to support, stabilize, and grant the arm movement to move up, down and rotate. The rotator cuff ensures that the arm remains in the shoulder socket. Damage or injury from an accident or gradual wear and tear can result in inflammation to t…

Today's Chiropractic

Location Near You

Community: Google+ Followers 10K+