Skip to main content

Todays Trending Topic ♛

Exercise Reduces Symptoms from Fibromyalgia | Central Chiropractor

Fibromyalgia is a mysterious disorder that has been misunderstood for many years, however, there are lots of treatment options available to relieve its symptoms. When it comes to fibromyalgia, exercise can be beneficial to relieve it.

How does exercise help fibromyalgia?
Exercise will be an essential part of fibromyalgia therapy, although your chronic pain and fatigue may make exercising seem excruciating. Physical activity reduces symptoms such as fatigue, depression, and can even help you sleep better. Exercise can be a fundamental part of managing your symptoms.

Exercise for Fibromyalgia
Getting regular physical activity 30 minutes per day, helps reduce perceptions of pain in people with fibromyalgia, according to a 2010 study published in Arthritis Research & Therapy. The signs of fibromyalgia may make exercising a challenge, although exercise is a commonly prescribed treatment for chronic pain.

During a research study, the research team separated 84 minimally active patients…

Soccer Injury-Prevention Programs: Are They Worth It?


Exactly how effective are injury-prevention programs in soccer? El Paso, TX.s Scientific chiropractor Dr. Alexander Jimenez looks at the very latest evidence...

Football is the world's most popular team sport. Injuries are a significant issue for both amateur and professional players. Indeed, previous research has estimated that soccer players are among the most injury-prone athletes having an estimated injury rate of 17-24 accidents per 1000 playing hours(1). Nineteen per cent of all sports injuries which exist in the Netherlands are because of soccer(two) and in Britain alone, the expense of therapy and time lost from work owing to football injuries is estimated to be approximately #1billion annually(1)!

In a landmark study, researchers followed two Champions League teams and gathered data on 2,229 players over seven seasons to examine the injury profile of muscular injuries in soccer players(3). They also analyzed the gamers' training schedules and data out of their games to construct a detailed picture of the injury risks that were associated. The findings were as follows:
  • 2,908 muscle injuries have been enrolled;
  • Normally, a player sustained 0.6 muscle injuries each season (equating to around 15 muscle injuries per season at a squad of 25 players);
  • Muscle injuries constituted 31 percent of all injuries and caused 27% of the total injury lack;
  • Ninety-two per cent of muscle injuries affected the four Big muscle groups of the lower limbs: hamstrings (37 percent), adductors (23 percent), quadriceps (19%), and calf muscles (13%);
  • Sixteen per cent of the muscular injuries were re-injuries; nonetheless, these re-injuries caused significantly longer absences than did the first injuries.
  • The prevalence of muscular injury increased with age.
The exact same group of researchers also carried out a follow-up study (published in 2013) in which they sought to establish the consequences of fixture congestion on injury rates among the gamers(4). Time-loss and exposure injuries were enrolled prospectively from 27 teams over 11 seasons. Matches were grouped based on the amount of recovery days before each match and the accident rates were compared between classes. The results showed that compared to a recovery interval of more or six days, muscular injury rates and overall injury rates were raised in league matches where players had had four or less recovery days.

Given the high levels of trauma among football players (a risk that is increased during periods of match congestion) and the financial pressure of the modern game, it's perhaps unsurprising that medical team caring for players find that treatment of injuries in players is quite a frustrating and also a never-ending struggle. In addition, it clarifies why some players end up returning to contest prior to the injury has healed completely, setting the stage for injury recurrence, together with protracted absence of this participant from competition and training.

Injury Treatment

Treating injuries in football is both time- consuming and expensive, particularly at the elite level. And while there's a large literature on the epidemiology of sports injuries, established protocols for treating muscular injuries and assessment criteria for imaging, and a number of clinical and functional tests that could assist the health staff in deciding the optimal point where an athlete can be safely returned to full participation(5,6), the current guidelines haven't translated into a significant reduction in muscle injury levels in professional sports such as soccer.
To simplify things further, the evidence indicates a new injury often occurs within a couple of weeks after return to contest, and typically costs the player more lost playing time than the key injury(7). The most probable reasons for this observation are likely associated with bodily alterations following the first injury, such as muscle stiffness and/or fatigue, scar tissue formation, biomechanical alterations, neuromuscular inhibition, as well as inadequate treatment -- for instance, overly aggressive or incomplete rehabilitation(8-10).

Injury-Prevention Programs

Even armed with knowledge that is up-to-date and the best technology is fraught with difficulty. Remembering the old adage that 'an ounce of prevention is worth a pound of cure', a alternative that is far better to attempt to prevent injuries from happening in the first place with an injury-prevention program. This is easier said than done. It is correct that there is an abundance of literature on the effectiveness of methods to avoid harm recurrence and muscle injury, such as enhancing flexibility eccentric and concentric exercises and drills. Despite this and apps like FIFA's 'The II' (see Box 1), the incidence of muscle injuries generally, and the recurrence rate particularly, remains stubbornly high(11-16).

More recent studies indicate that in higher levels of functionality, there might not be much in the way of significant added benefits, while some early study appeared to give evidence for the efficacy of programs in football, as described in box 1. At a follow up to the study described above(18) and that was published this past year, the same group of investigators looked to see if an injury prevention program comprising 10 exercises designed to enhance stability, muscle strength, co-ordination, and versatility of the back, hip and leg muscles (FIFA's 'The II') was effective concerning reducing injury levels and whether it offered any advantages in terms of reducing the related costs of following treatment for injuries that did occur(19).

From the analysis, 479 adult male amateur gamers aged 18-40 years have been split into two classes: the intervention group had been taught to do exercises focusing on core stability, bizarre training of thigh muscles, proprioceptive training, dynamic stabilization, and plyometrics with straight-leg orientation at every training session (2-3 sessions per week) through one season. The management team, meanwhile, continued their usual warm up.

As in the previous study, there were no significant differences in the percentage of players that are injured and injury rates between the two groups. What was intriguing was that in the intervention group, the price of injury treatment was 256 per participant. In the control group nonetheless treatment costs were twice at $606 per participant. The investigators commented that the cost savings in the intervention group may be the result of a rate of knee injuries, which have costs because of more lengthy rehabilitation periods and much more time lost at work compared to a number of different injuries.

Meanwhile, another study on an injury- prevention program (based on The II) in male amateur players had been printed in the end of last year(20). It discovered that (like the previous studies), an intervention program did not decrease the incidence of harm throughout the course of a season. However, such as the study, the players in the intervention group did incur less health care costs, although a justification for this finding wasn't given. As if to validate the confusion surrounding the value of injury-prevention programs for football players, then a recently published systematic overview of all of the previous studies released thus far fought to achieve a definitive conclusion(21). Six studies involving a total of 6,099 participants met the inclusion criteria and the results of these were conflicting two of the six studies (among large and one of moderate quality) reported a decrease in injury rates that were actual. Four of the six research an 'preventive effect', even though the effect of a single study wasn't statistically significant. Possible reasons for these contradictory findings might be subject choice (sex and level of ability), differences between the intervention programs implemented (content, training frequency and duration) and compliance with this application. What's clear, however, is that studies investigating the type and seriousness of exercises within an injury-prevention program are still required to reduce the incidence of accidents in soccer efficiently.

Good News On Prevention

Since the review study cited previously(21) was printed, two quite newly published studies on injury-prevention apps in soccer seem to provide more encouraging news -- for muscle injuries at least. In one, researchers studied elite players competing over two consecutive seasons, where the first (2008-2009) function as intervention period and the second, the management period (2009-2010)(22). In total, 26 (08/09) and 23 (09/10) elite male pro football players competing within the Scottish Premier League and European competition participated. The accident prevention training program was conducted twice weekly to the entirety of this season (58 avoidance sessions) and the results were compared with the control (no injury-prevention program) year.

On first inspection, the results were disappointing, showing an increase in the complete number of accidents within the intervention period (88 vs 72). But this was largely because of the greater quantity of contusion injuries sustained inside the intervention season (44) compared with control season (23). Assessing like for muscular injuries that were significantly fewer were observed during the intervention season, which had been even more impressive given the larger squad size at the intervention season.

Another newly published study by Italian scientists who researched the effect of a two-tiered injury-prevention program on initial injury and re-injury prevalence in 36 elite male football players also causes encouraging reading(23). During the season prior to that examined in the study, there had been 27 muscle injuries in the group, which accounted for 58.7 percent of the total injuries: 13 of these had occurred throughout practice and 14 during matches. The general incidence of muscular injuries was 5.6 injuries/1000 hours of training/playing exposure and the effect was 106.4 times absence/1000 hours exposure.

To try and decrease the speed of injury through the following season, the team doctor (also among the study's authors) found an injury-prevention program, conducted 2-3 times per week. This consisted of two elements: a collection of core stability exercises conducted by the whole group prior to each practice session (see Box 2) along with an individualized injury prevention program, which has been started after assessment with kinesiologic and diagnostic tests. At the start of the year, every athlete underwent testing of leg flexibility using the Ober evaluation, Thomas evaluation and straight-leg-raising [SLR] test(24-26). The prone instability test(27) was completed to show spinal instability along with the stork test (28,29) to assess sacroiliac dysfunction. Quadriceps and hamstring strength were measured isokinetically and attention was directed in evaluation of immunity of gluteus medius' power.

The injuries that happened based on MRI and clinical imaging findings were diagnosed by the medical team. An injury was defined as though it caused the participant to miss the next training session or match, and happened during a scheduled training session or match. An injured player was defined injured before the club medical staff cleared him for participation. Re-injuries were described as those that occurred as those that occurred at the same website no longer than three months following the player had returned to full involvement at early re-injuries and exactly the exact same site.

Results

Throughout the intervention season, a total of 64 injuries occurred -- 36 (56 percent) during practice and 28 (44%) during matches. Of them, 20 were muscle injuries, accounting for 31.3 percent of the total injuries; 14 of which occurred during practice and 6 during games. In all, three re-injuries happened and (15 percent of overall muscle injuries) and there were not any premature re-injuries. In comparison with the preceding season with no intervention-program set up, there was a reduction in the number of times and muscle injuries . Specifically, whereas muscle injuries accounted for 31 percent of harms they accounted for 59% of all injuries. Significantly, the number of injuries per 1000 hours of training and playing time was reduced by over half of 5.6 to 2.5. Meanwhile, the number of days fell by nearly two-thirds 106 into 37. The investigators put the success of this intervention down to three key aspects:
  • An injury prevention program that comprised of core stability exercises similar to those in 'The II' program but which differed in its two-tiered arrangement (group and individual sessions), allowing for intense and special training. In contrast, the combined results in research into The II app are probably because of the non- special content and ineffective intensity.
  • The program's continuity of commitment by the players to both the group and individual areas.
  • The addition of bizarre hamstring training in the group program (2 sets of 5 repetitions per week) combined with all the personalized application for players with a history of injury.
  • Using ice baths in the conclusion of every training session
The investigators cautioned that their study would have included a larger number of topics, but the data still showed a critical progress by the prior year over that. They also argued that by increasing the number of group and individual prevention training sessions, the outcomes could be enhanced.

Summary & Recommendations

Injury treatment in aggressive soccer is equally costly and time-consuming also given the pressures of the game, injury avoidance is more important than ever. But, despite extensive published literature on harm prevention strategies and initiatives such as FIFA's 'The II', the injury rates in soccer remain high, especially in the higher levels.

The latest research indicates that while overall injury prevention programs such as The II might reduce the incidence of trauma in amateur gamers, especially by reducing the incidence of knee injury. However, they will probably not benefit professional players or level. Instead, combining a more individualized approach (using a far greater emphasis on particular exercises determined by kinesiologic and diagnostic testing) with team sessions seems to be desirable. Additionally, it is important that gamers are 'on-board' with almost any program and take part regularly (at least twice weekly) to achieve all the potential advantages.

References
1.Br J Sports Med. 2002;36:354-9.
2.Injury Prevention. 2011;17(2):1-5.
3.Am J Sports Med. 2011 Jun;39(6):1226-32
4.Br J Sports Med. 2013 Aug;47(12):743-7.
5. Knee Surg Sports Traumatol Arthrosc 2010; 18:1798-1803.
6.J Orthop Sports Phys Ther 2010; 40:67-81
7.Br J Sports Med 2005; 39:542-546
8. Sports Med 2004; 34:681-695
9. Am J Sports Med 2002; 30:199-203.
10. Sports Med 2012;42:209-226
11. Br J Sports Med 2012; 46:112-117.
12.Am J Sports Med 2004; 32(suppl 1):S5-S16.
13. Am J Sports Med 2010; 38:2051-2057.
14. Am J Sports Med 2010; 38:1147-1153.
15. Br J Sports Med 2006; 40:767-772
16. Am J Sports Med 2013; 41:327-335
17. Am J Sports Med 2002; 30(5):652-9
18.Br J Sports Med 2012 Dec;46(16):1114-8
19. J Physiother 2013 Mar; 59(1):15-23
20. Clin J Sport Med 2013 Nov; 23(6):500-1
21. Sports Med 2013 Apr; 43(4):257-65
22.J Strength Cond Res 2013 Dec; 27(12):3275-85
23. J Muscles, Ligaments and Tendons Journal 2013; 324 3 (4): 324-330
24. J Bone & Joint Surgery 1936; 18:105-110.
25. Phys Ther Sport 2007; 8:14-21.
26.J Orthopaedic and Sports Physical Therapy 1981; 2:117-133
27. Magee DJ. Orthopedic Physical Assessment. 3rd ed. Philadelphia, PA: W.B. Sauders Company; 1997.
28. Spine 2003; 28: 1593-1600
29. Clinical Biomechanics 2004; 19:456-464

Popular posts from this blog

Pain in the Quadratus Lumborum Muscle

A majority of the population have at some point experienced low back pain in their lifetimes. Although low back pain is recognized to result from numerous conditions or injuries on the lumbar spine, muscle strains such as a quadratus lumborum muscle strain, are believed to be a leading cause for the recognizable symptoms of pain and discomfort.
The quadratus lumborum muscle is a sizable muscle in the shape of a triangle, located deep on each respective side of the lower back. The role of the wide muscular tissue is to grant mobility to the lumbar spine in sequence for the torso to move laterally from side to side as well as extend and stabilize the lower spine to improve posture. When this muscle is strained or pulled, the symptoms can restrict movement on the lower back and since the muscular tissue is so extensive, recovery from this type of injury usually requires more time and patience to fully heal.


Quadratus Lumborum Syndrome V.S. Facet Joint Syndrome
When symptoms of back pa…

Achilles Tendon Injury

Achilles tendonitis is a medical term used to describe a condition resulting in irritation of the large tendon, the Achilles tendon. Found in the back of the ankle, this condition is recognized as a common cause for injury among athletes. Excessive use of the Achilles tendon results in inflammation together with swelling and pain.
The development of Achilles tendonitis can be associated with two important factors, most frequently among athletes, which are, lack of flexibility and over-pronation. With age, the tendons will begin to lose flexibility, just the same as other tissues in the body. This change causes the tendons to become more rigid and more vulnerable to injury. For some people, the ankle may roll too far downward and inward with each step they take. This is called over-pronation, which places more stress on the tendons and ligaments of the foot, contributing to injury if not corrected.
Achilles tendonitis may also develop from other factors. An increase in an athlete’s …

5 Common Causes for Shoulder Pain

The shoulders are the most mobile joints in the human body. Because the ball of the humerus is designed to be larger than the shoulder socket that holds it, the shoulders need to be supported by muscles, tendons, and ligaments to secure them in a stable or natural position. Since the shoulder can be unstable, it is often a site for many common complications. Below are 5 common causes of shoulder pain and their associated symptoms.
Rotator Cuff Tear
Rotator cuff tears within the shoulder are a very common type of shoulder injury. The rotator cuff consists of a set of four muscles: the supraspinatus, the infraspinatus, the subscapularis, and the teres minor. All of these muscles are attached to the bones of the shoulders by tendons, which purspose is to support, stabilize, and grant the arm movement to move up, down and rotate. The rotator cuff ensures that the arm remains in the shoulder socket. Damage or injury from an accident or gradual wear and tear can result in inflammation to t…

Today's Chiropractic

Location Near You

Community: Google+ Followers 10K+