Skip to main content

Todays Trending Topic ♛

Interventional Chronic Pain Management Treatments | Central Chiropractor

Chronic pain is known as pain that persists for 12 weeks or even longer, even after pain is no longer acute (short-term, acute pain) or the injury has healed. Of course there are many causes of chronic pain that can influence any level of the spine, cervical (neck), mid back (thoracic), lower spine (lumbar), sacral (sacrum) or some combination of levels.

What treatments do interventional pain management specialists perform?
Oftentimes, early and aggressive therapy of chronic neck or back pain can earn a difference that is life-changing. But remember that knowledge is power: Be certain that you know your choices. There are various treatment procedures and treatments available for chronic pain, each completed by a treatment specialists. Interventional pain management specialist treatments may be a fantastic solution for some people with chronic pain symptoms.

Interventional Pain Management Specialists
Interventional pain management (IPM) is a special field of medicine that uses injecti…

Running Biomechanics & Hip Injuries

Running Biomechanics & Hip Injuries in Athletes - El Paso Chiropractor

Engaging in everyday training and physical activities on a regular basis is fundamental for athletes as doing so helps increase their performance potential when participating in their specific sport or exercise. However, with constant and repetitive movements, the human body can eventually experience degenerative changes which can result in damage or injury to the structures of the body as well as develop or aggravate a previously existing condition. In addition, an accident during the practice of the athlete's specific sport or physical activity can result in various types of sports injuries.
While some forms of sports injuries are more commonly diagnosed in athletes, such as ankle sprains or strains, occasionally, individuals may be exposed to a unique circumstance where a rare type of injury can occur. Hip injuries are considered infrequent sports injuries, primarily because the hip is so well supported by its surrounding structures and tissues. When they do occur though, an athletes performance can be greatly affected.
Hip injuries are often uncommon types of injuries among athletes, as these don’t generally occur immediately, rather, the accumulated hours of training may progressively cause a series of worsening symptoms.
Approximately 3.3 percent to 11.5 percent of long distance runners suffer sports injuries as a result of overtraining, where hip complications are believed to contribute for up to 14 percent of all athletic issues. In fact, hip injuries make up nearly a sixth of all injuries sustained by athletes. Moreover, because of the complexity of the hip and its surrounding structures, about 30 percent of hip injuries are undiagnosed. Without correcting the initial problem, recurrence or ongoing impairment may often follow.

Hip Anatomy

The hip can be described as a ball and socket joint, the ball constitutes from the head of the femur and the socket from the acetabulum of the pelvis. The depth of the socket is increased due to a specific type of tissue best known at the fibrocartilage lining of the labrum, which is almost identical to the cartilage found in the knee. The extra added depth to the acetabulum adheres the ball within the socket to allow the necessary stability to support the hip joint as well as its surrounding muscles and ligaments. The labrum is made up of multiple nerve endings which assist with the perception of pain and the awareness and balance of the joint within the body, referred to as proprioception. The structure provides forward, backward, and side to side movement to the hip, also allowing it to rotate inwards and outwards. This intricate mobility of the hip, together with the speed and power of running, is the main cause behind the different forms of hip injuries among athletes.

Hip Anatomy Diagram - El Paso Chiropractor

Running Biomechanics

To understand the mechanics of running and the process of impact which transfers through the body, the cycle of running can be explained into two phases. The first phase is called the stance phase, where the foot lands on the ground, and the second phase is called the swing phase, were the foot moves through the air. The stance phase initiates when the heel is in contact with the ground. Referred to as the mid-stance, this middle phase occurs when the rest of the foot follows, also referred to as the absorption phase. At this point, the knee and ankle are fully flexed in order to be able to absorb the impact against the ground, functioning as a brake to control the landing. The leg then saves this elastic energy within the muscles. The hip, knee and ankle subsequently extend using the recoil from the muscles to complete the toe-off phase and propel the body forward and upward.
During longer distance running, the stance phase generally lasts longer due to a runner’s longer stride. The stance phase also exposes the hip joint to about five times the individual’s body weight in comparison to three times the individual’s body weight during the swing phase. When athletes run faster, they spend less time on the ground, subjecting them to lesser forces being transmitted up their lower extremities.
The muscles and tissues of the hip, knee and ankle function together to control the movements of the joints and well as restrict the forces being placed against them. They are exposed to reaction forces from the ground which force the structures to contract accordingly. The harder and athlete lands or the greater the distance they run, the more activation is usually required by the structures to offload the joints and absorb the force of the additional load. As every runner possesses their unique running style, over a period of time, a constant pattern of running and the impact they receive from the above mentioned forces eventually exceeds an individual’s limit. This combination of factors is generally the leading cause of hip injuries among many athletes.

Running Biomechanics Diagram - El Paso Chiropractor

Running and its Effect on the Hip

Running impact occurs through the heel strike of the running phase. Depending on the duration of contact, the frequency and how heavy an athlete lands on their heel, the extent of impact will vary. Runners who impact on the midfoot are believed to experience far less impact force than other athletes.
As often described by many healthcare professionals, a single load can damage or injure the articular cartilage and tear the labrum, most commonly occurring after an unexpected trip or fall. Most often than not, however, the repetitive load from running or similar activities can gradually develop small micro trauma to the hip joint, an accumulation of damage which can thin out this layer of cartilage and cause tearing and shearing of the tissues. The hip consists of flexor muscles, such as the iliopsoas, the sartorius, the rectus femoris, the tensor fasciae latae and the pectineus, which are designed to flex in order to absorb the shock of impact. The pelvis will then follow by rotating back, providing more space for flexion to occur. It will then adduct, using the adductor longus, adductor brevis, adductor magnus and pectineus, which will then follow into abduction, primarily utilizing the gluteus medius, for a terminal swing and take off. The hip will then subsequently move into extension, where the leg extends backwards, to propel the body forward, mainly utilizing the gluteus maximus as the pelvis shifts forward to adjust the functions of the hip joint.
If any of these movements are altered during physical performance, the forces of impact being placed against the body will be transmitted incorrectly, causing the pelvis to become unstable and adding tremendous strain against the hip joints and muscles. Repetitive and constant loads of weight and force can then create an accumulation of trauma, leading to several forms of hip injuries and complications.

Hip Pathologies

A wide variety of hip injuries can affect running athletes as well as those involved in other types of sports and physical activities. The most common complications are as follows:
Muscle strains, can develop and affect any of the muscles and tissues involved in the natural biomechanics of the hip, specially if these become overloaded due to poor alignment and mechanics. The most common muscle strains causing hip injuries occur to the iliopsoas due to over flexing of the hip joint or from a heavy impact while the hip is flexed and an excessive amount of load is placed against the muscles. The gluteus medius can also suffer damage or injury if the runner or athlete over-adducts, described as an inwards movement of the hip, during their running pattern and the gluteus medius tendons become irritated with direct compression from the hip bone.
Trochanteric Bursitis, is characterized by swelling and inflammation of the fluid-filled sac known as the bursa, located within the greater trochanter on the side of the hip. The bursa provides the appropriate mobility to the iliotibial band found over the hip bone, however, constant shearing can often lead to irritation and inflammation.
Femoroacetabular impingement, or FAI, occurs when the femur compresses the acetabulum, primarily during the flexion of the hip where the bones and other structures collide. A pincer impingement where the acetabulum rim develops an extra lip of bone can often cause hip injuries or a CAM impingement can cause the femoral neck to grow an extra ridge of bone, resulting in other types of complications. Untreated FAI can progressively lead to labral tears because the additional bone can repeatedly grind down the labrum.
Labral tears, are medically defined as a tearing of the labrum which surrounds the joint of the hip and the acetabulum. These generally occur after a traumatic event or injury or due to cumulative microtraumas over a period of time.

Prevention and Rehabilitation

Because of the wide variety of hip injuries which can affect the modern athlete, a proper diagnosis performed by a qualified healthcare professional, such as a chiropractor or physical therapist, is absolutely essential towards developing an appropriate treatment plan. Foremost, athletes with already diagnosed hip injuries should avoid repeated or regular flexions of the hip to prevent further complications. If flexion cannot be avoided, for instance, when sitting, then the individual can lean back or stand up into extension. Cycling and treadmill running are not appropriate cross-training methods for hip injuries as these promote hip flexion and internal rotation, causing further impingement to the acetabulum. Swimming is permitted in these cases as it is a non-impact sport and it avoids these irritable positions.
The following three stages of rehabilitation can be followed in sequence or may be combined to prevent aggravating hip injuries.
First, the individual can proceed to strengthen the gluteal muscles, primarily the gluteus medius and maximus in isolation by performing the next exercise. The individual must bridge lie on their back while keeping their knees bent and placing their arms by their sides. Then, placing a resistance band around their thighs will help draw the knees in together. The individual may attempt to keep them apart by pushing against the band, activating the gluteus medius. Subsequently, the athlete can carefully push up through the heels to lift their buttocks and back off the floor, holding the position for five seconds before slowly returning to the initial position. This exercises should be repeated in sets of 10.

Bridging Demonstration - El Paso Chiropractor

Also, the individual can perform another strengthening exercise by clam lying on their side with the specified hip on top. Keeping their feet together, the affected individual should then lift the top knee upwards into external rotation, activating the gluteus medius and preventing the hip from adducting. It’s important for the athlete to control their knee on the return to start position to maintain eccentric muscle control and improve greater hip stability. This exercise should be repeated for three sets of 10 repetitions.

Clam Demonstration - El Paso Chiropractor

Second, to strengthen the whole lower extremities, the individual must combine movements to incorporate other muscle groups and improve core stability. To achieve this, the individual must perform a lunge with twist by taking a step forward with their specified leg and proceed to bend both knees and hips simultaneously, making sure not to bend the hip to more than 60 degrees. Once in this particular position, the affected athlete can proceed to rotate their body from right to left, slowly returning to the starting position to strengthen the core and improve pelvic stability. This exercise should be repeated for sets of 10 as the participant is capable to do so.

Lunge with Twist Demonstration - El Paso Chiropractor

Also, the individual can perform another exercise to strengthen the lower extremities known as the single leg squat with twist. Standing on the specified leg while the pelvis is in a neutral position, the athlete can proceed with this exercise by bending at the hip and knee into a squatting position. Keeping the knee behind the toes, the athlete must then rotate their body to the right and left while keeping their back straight, further activating the the gluteus maximus and challenging the core muscles. This exercise can be repeated in sets of 10 as able.

Single Leg Squat with Twist - El Paso Chiropractor

And finally, to strengthen the hip and improve the functional movements of running patterns, athletes with hip injuries can proceed to perform the following exercises. The standing hip hike can be completed by having the athlete stand upright with their feet kept hip distance apart. The individual must then hitch up their specified hip while maintaining neutral pelvic stability, making sure the hips do not twist or move around. Repeat for three sets of 10 repetitions.
Then, the individual can also perform forward step ups by standing in front of a high step or stair, holding on to a pole at one side to activate the latissimus dorsi back muscles, associated with the gluteal muscles. Leading with the chosen hip, the athlete can then proceed to step upwards and then return to the starting position. Repeat leading with the same leg each time for three sets of 10 repetitions.
Furthermore, to continue strengthening their hip and improve function, hip swings can be utilized to help those athletes with hip injuries throughout their rehabilitation process. Using a similar setup as the forward step ups, the individual can perform this exercise by resting their good knee on a bench. Holding on to the pole, the athlete can proceed to bring the specified hip forward into hip flexion, returning to the original position. The static leg should maintain good pelvic stability and will be brought into extension, activating the gluteus maximus rather than the hamstrings. This exercise must be repeated for three sets of 10 repetitions.

Hip Swings Demonstration - El Paso Chiropractor

Return to Play

The athlete can participate in an appropriately developed return to play program following the variety of hip injuries they may experience, alongside the strength training regimen mentioned above once the complications begin to improve. Runners should aim to begin this specific program at approximately 60 percent pre-injury intensity. Athletes can begin running on soft surfaces to limit the amount of impact, they may include a comprehensive dynamic warm-up. Subsequently, athletes can begin progressively increase the speed, only running on alternate days for the first 3 to 4 weeks, continuing to strengthen through training. Sprints, hills, accelerations, and decelerations can be introduced slowly, choosing one element at a time.
As with any type of rehabilitating programs, the affected athletes must first seek medical attention from a qualified healthcare professional to receive a proper diagnosis of their injuries before attempting any form of stretches or exercises as to avoid further injuries. A chiropractor, is a specialized doctor who focuses on a variety of spinal injuries or conditions and its surrounding structures, including various types of sports injuries. Through chiropractic care, a chiropractor can perform a series of spinal adjustments and manual manipulations to provide mobilization therapy and improve an athlete’s symptoms, strength, flexibility and overall health. Doctors of chiropractic, or DCs, may also recommend a series of additional exercises different from the ones mentioned above to accordingly help speed up the individual’s recovery process.

Tips for Preventing Overuse and Traumatic Injuries

Hip injuries can be debilitating to runners as well as athletes from other sports. Hip flexibility and strength is essential for optimal performance. The hip joint is a complex structure that moves in multiple directions and is stabilized and supported by those specific structures. When an individual is faced with debilitating hip injuries, getting the appropriate medical attention is essential and following through with the right rehabilitation exercises can be crucial towards the athlete’s overall recovery and return to play.
Maintaining the proper health of your spine, primarily if you're a runner but also among athletes, is essential as the hip and its surrounding structures are necessary for almost all types of sports. When seeking care for these type of sports injuries, chiropractic care is a recommended form of alternative care which treats patients without surgical interventions. Furthermore, chiropractic treatment can help restore the individual's original health as well as promote a faster recovery and increase their strength, flexibility and mobility.
For more information, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 . 
By Dr. Alex Jimenez

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7®️ Fitness Center



Popular posts from this blog

Pain in the Quadratus Lumborum Muscle

A majority of the population have at some point experienced low back pain in their lifetimes. Although low back pain is recognized to result from numerous conditions or injuries on the lumbar spine, muscle strains such as a quadratus lumborum muscle strain, are believed to be a leading cause for the recognizable symptoms of pain and discomfort.
The quadratus lumborum muscle is a sizable muscle in the shape of a triangle, located deep on each respective side of the lower back. The role of the wide muscular tissue is to grant mobility to the lumbar spine in sequence for the torso to move laterally from side to side as well as extend and stabilize the lower spine to improve posture. When this muscle is strained or pulled, the symptoms can restrict movement on the lower back and since the muscular tissue is so extensive, recovery from this type of injury usually requires more time and patience to fully heal.


Quadratus Lumborum Syndrome V.S. Facet Joint Syndrome
When symptoms of back pa…

Achilles Tendon Injury

Achilles tendonitis is a medical term used to describe a condition resulting in irritation of the large tendon, the Achilles tendon. Found in the back of the ankle, this condition is recognized as a common cause for injury among athletes. Excessive use of the Achilles tendon results in inflammation together with swelling and pain.
The development of Achilles tendonitis can be associated with two important factors, most frequently among athletes, which are, lack of flexibility and over-pronation. With age, the tendons will begin to lose flexibility, just the same as other tissues in the body. This change causes the tendons to become more rigid and more vulnerable to injury. For some people, the ankle may roll too far downward and inward with each step they take. This is called over-pronation, which places more stress on the tendons and ligaments of the foot, contributing to injury if not corrected.
Achilles tendonitis may also develop from other factors. An increase in an athlete’s …

5 Common Causes for Shoulder Pain

The shoulders are the most mobile joints in the human body. Because the ball of the humerus is designed to be larger than the shoulder socket that holds it, the shoulders need to be supported by muscles, tendons, and ligaments to secure them in a stable or natural position. Since the shoulder can be unstable, it is often a site for many common complications. Below are 5 common causes of shoulder pain and their associated symptoms.
Rotator Cuff Tear
Rotator cuff tears within the shoulder are a very common type of shoulder injury. The rotator cuff consists of a set of four muscles: the supraspinatus, the infraspinatus, the subscapularis, and the teres minor. All of these muscles are attached to the bones of the shoulders by tendons, which purspose is to support, stabilize, and grant the arm movement to move up, down and rotate. The rotator cuff ensures that the arm remains in the shoulder socket. Damage or injury from an accident or gradual wear and tear can result in inflammation to t…

Today's Chiropractic

Location Near You

Community: Google+ Followers 10K+